Experimental study of particle dampers applied to wind turbine blades to reduce low-frequency sound emission

Author:

Prasad Braj Bhushan,Duvigneau Fabian,Juhre Daniel,Woschke Elmar

Abstract

Sound emission from an onshore wind turbine is one of the significant hurdles to use wind energy to its full potential. The vibration caused by the generator is transmitted to the blades, which radiates the sound to the surrounding. The purpose of this experimental study is to present a passive vibration reduction concept, which is based on the high damping properties of granular materials. The efficiency of this concept will be investigated using a laser scanning vibrometer device. For the experimental purpose in the laboratory, small-scale replicas inspired by the original configurations are used as reference geometries for the wind turbine generator and the blades. Vibrations of the prototype, with and without granular material filling, will be determined and compared with each other. The influence of the amount of granular material inside the structure is also investigated. Apart from this, different types of granular filling are examined with respect to their efficiency in reducing the amplitude of vibration of the structure while being as light as possible in order to design a lightweight solution, which increases the overall mass of the wind turbine marginally.

Publisher

Institute of Noise Control Engineering (INCE)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3