Precision of inertial measurement unit sensors in head-tracking systems used for binaural synthesis

Author:

Jambrosic Kristian,Planinec Vedran,Horvat Marko,Francek Peter

Abstract

Binaural synthesis is the most used sound system for diverse virtual and augmented reality systems nowadays, given its simplicity of implementation and the need of using only two audio channels. It is widely used in computer games, auralization and even audio production. To achieve the most natural sound field recreation, systems used for binaural synthesis must include a head-tracking sensor to dynamically calculate the binaural signal for the head orientation at any given moment. This is done by inertial measurement unit (IMU) sensors, specifically the triaxial accelerometers, gyroscopes, and magnetometers. Simpler systems, e.g., Arduino or other embedded systems, provide only raw sensor data, and the orientation is calculated by a processing unit. Other, more complex systems such as smartphones or VR headsets already calculate their position from the raw data using complex sensor integration algorithms. In this paper, a measurement procedure for measuring the precision of IMU sensors is presented. The need of absolute orientation calibration is addressed, and challenges of sensor data drift are discussed. Measurement results for simple embedded systems and complex systems found in smartphones are presented, and an estimation of IMU sensor quality for binaural synthesis is made.

Publisher

Institute of Noise Control Engineering (INCE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3