Development of direct acoustic energy flow analysis (DAEFA) for ship cabin noise in the medium-to-high frequency range

Author:

Kim Tae-Gyoung1,Hong Suk-Yoon1,Song Jee-Hun2,Kwon Hyun-Wung3,Kim Sung-Hooin4

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University

2. Department of Naval Architecture and Ocean Engineering, Chonnan National University

3. Department of Naval Architectural and Ocean Engineering, Koje College

4. Hyundai Heavy Industries Co. Ltd

Abstract

Noise analysis from heating, ventilation and air conditioning (HVAC) elements in ship cabins is needed to satisfy the strict noise regulation for the ship cabin, and it is very important for their effects to be evaluated in the early stage of design. In this paper, a direct acoustic energy flow analysis (DAEFA) model is presented for the noise analysis of the ship cabin to reflect direct fields of the sources from an HVAC element. Total acoustic fields are considered by deriving the fundamental solution of the energy flow model for direct and reverberant fields in a closed space. Sound propagation in the direct field is implemented using the geometrical acoustics concept, and noise sources introduced into the reverberant sound fields are considered by using the relationship between direct fields and the closed space boundaries. For cabin noise analysis using DAEFA, interior boundaries of the cabin are discretized, and boundary integral formulations for each field are integrated. Noise analysis is performed for various cases with the DAEFA model to minimize cabin noise. The optimal design derived through the analysis was applied to an actual ship, and cabin noise measurement was conducted onboard the applied ship. Comparison of the analysis and measurement results confirms the effectiveness of the proposed design.

Publisher

Institute of Noise Control Engineering (INCE)

Subject

Industrial and Manufacturing Engineering,Public Health, Environmental and Occupational Health,Mechanical Engineering,Acoustics and Ultrasonics,Aerospace Engineering,Automotive Engineering,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3