Analytical determination of critical velocity and frequencies of beam with moving mass under different supporting conditions

Author:

Zhao Liang,Wang Shun-Li

Abstract

For a moving mass-beam system, the critical velocity of the moving mass is a key parameter that relates to the vibration stability of the system. In fact, the critical velocity obtained by the commonly used assumed mode method (AMM) differs from the actual situation. In this study, an analytical procedure is introduced to determine the critical velocity and frequency of the moving mass-beam system. The influence of moving mass is considered in the modal functions of the beam, and the frequency equations of the system were obtained through the modal analysis method and Laplace transform. And beams with four types of boundary condition were analyzed, which are hinged-hinged (HH) beam, clamped-hinged (CH) beam, clamped-clamped (CC) beam, and cantilever (CF) beam. By solving the frequency equations, the vibration frequencies of the system can be obtained, and the critical velocity can be determined. The results of the proposed method were validated by the finite element method (FEM). Through some examples, it was found that the natural frequency and critical velocity obtained by AMM is relatively high. And the critical velocities of the same moving mass-beam system under different supporting conditions ranked in ascending order are as follows: vcrHH<vcrCH<vcrCF<vcrCC. It is also found that when the moving mass undergoes variable motion on a beam, the vibration frequency obtained with acceleration considered is higher than that obtained with acceleration neglected. The results of this article will be helpful for structural design and its dynamic analysis.

Publisher

JVE International Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3