Influence of floating support on the dynamic characteristics of compound planetary gear set

Author:

Zhang Haibo,Shang Huajian,Yang Chao

Abstract

Due to a large number of components, complex meshing relations and high requirements for assembly accuracy, the dynamic characteristic of compound planetary gear, such as vibration, impact, periodic motion and load sharing, are more easily affected by internal excitation than those of simple planetary gear set and parallel shafting gear set. To improve the load sharing behavior and the resistance of Chaos motions in the compound planetary gear set, in this work, by introducing the floating support into the center gear and planet gear, a lumped-parameter dynamic model of the compound planetary gear set is built based on the lumped parameter method and Lagrange kinematics equation. The steady response is calculated by numeric method to investigate the influence of floating support from different components on loading sharing behavior and periodic motion. The results indicate that, the increase of the floating value of all components improves the instantaneous load-sharing behavior, and single floating of planet gear reduces the load sharing behavior. To avoid the system being in quasi-periodic motion and Chaos motions under the condition of floating support, the input speed should be avoided away from the range of 3201 r/min-5069 r/min.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

Reference32 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic analysis of planetary gear transmission based on Lagrange interpolation polynomials;Measurement Science and Technology;2024-08-02

2. Effect of Floating Support Parameters on the Load-Sharing Performance of EDPGS Based on Mathematical Statistical Methods;Machines;2024-04-09

3. Analysis of vibration and load-sharing characteristics of two-stage planetary gear transmission system with cracks;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-15

4. Research on Waveform Identification of Power Fault Recording Based on Instantaneous Characteristic Parameters;2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3