Fault diagnosis method for hydro-power plants with Bi-LSTM knowledge graph aided by attention scheme

Author:

Guo Bilei,Wang Yining,Pan Weifeng,Sun Yanlin

Abstract

In hydro-power systems, the fault of equipment is an important potential threat for the safe production of electricity. Therefore, the automation and intelligence of fault diagnosis becomes the popular issue in the research on hydro-power system. In this paper, a knowledge graph-based method is put forth to diagnose faults occurred in hydro-power systems, since the knowledge graph can store structured and unstructured data for better fault diagnosis and intelligently search the reasons of the faults. First, we model the knowledge graph for hydro-power plants, where the rational path for the fault reason is formulated. Then, the bi-directional long short-term memory (Bi-LSTM) with conditional random field (CRF) is used to extract the entities and relations to the given documents, which record the phenomenon and reasons for the occurred faults. Moreover, the attention scheme is employed in the Bi-LSTM to weigh the closer relationships to improve the diagnosis accuracy. An automatic diagnosis algorithm is developed to improve the diagnosing efficiency by constructing rational paths, with which directive and in-directive factors for occurring faults can be traced. Simulation results reveal that the intelligent search method with a knowledge graph can effectively find the reason, locate the position, and provide useful suggestions for the occurred faults.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3