Author:
Guo Bilei,Wang Yining,Pan Weifeng,Sun Yanlin
Abstract
In hydro-power systems, the fault of equipment is an important potential threat for the safe production of electricity. Therefore, the automation and intelligence of fault diagnosis becomes the popular issue in the research on hydro-power system. In this paper, a knowledge graph-based method is put forth to diagnose faults occurred in hydro-power systems, since the knowledge graph can store structured and unstructured data for better fault diagnosis and intelligently search the reasons of the faults. First, we model the knowledge graph for hydro-power plants, where the rational path for the fault reason is formulated. Then, the bi-directional long short-term memory (Bi-LSTM) with conditional random field (CRF) is used to extract the entities and relations to the given documents, which record the phenomenon and reasons for the occurred faults. Moreover, the attention scheme is employed in the Bi-LSTM to weigh the closer relationships to improve the diagnosis accuracy. An automatic diagnosis algorithm is developed to improve the diagnosing efficiency by constructing rational paths, with which directive and in-directive factors for occurring faults can be traced. Simulation results reveal that the intelligent search method with a knowledge graph can effectively find the reason, locate the position, and provide useful suggestions for the occurred faults.
Subject
Mechanical Engineering,General Materials Science
Reference21 articles.
1. J. Jiang, “Reliability test and analysis of electrical automation control equipment,” Applied Mechanics and Materials, Vol. 556-562, pp. 2380–2383, May 2014, https://doi.org/10.4028/www.scientific.net/amm.556-562.2380
2. A. Khrennikov, “Fault detection of electrical equipment. Diagnostic methods,” International Journal of Automation and Control Engineering, Vol. 2, No. 1, pp. 19–27, 2013.
3. N. Md Nor, C. R. Che Hassan, and M. A. Hussain, “A review of data-driven fault detection and diagnosis methods: applications in chemical process systems,” Reviews in Chemical Engineering, Vol. 36, No. 4, pp. 513–553, May 2020, https://doi.org/10.1515/revce-2017-0069
4. B. Gou, Y. Xu, Y. Xia, G. Wilson, and S. Liu, “An intelligent time-adaptive data-driven method for sensor fault diagnosis in induction motor drive system,” IEEE Transactions on Industrial Electronics, Vol. 66, No. 12, pp. 9817–9827, Dec. 2019, https://doi.org/10.1109/tie.2018.2880719
5. K. Hao, L. Yuan, and W. Zhang, “Distributed hop-constrained s-t simple path enumeration at billion scale,” Proceedings of the VLDB Endowment, Vol. 15, No. 2, pp. 169–182, Oct. 2021, https://doi.org/10.14778/3489496.3489499