Review of shock wave pressure reconstruction methods in explosion field

Author:

Wang Liangquan,Kong Deren,Shang Fei

Abstract

Explosion shock wave pressure is one of the main damage parameters produced in the process of ammunition explosion, and it is also an important technical index to evaluate the damage power of ammunition. However, in the actual testing process, only a limited amount of shockwave pressure data at specific measuring points can be obtained, which cannot accurately reflect the distribution laws of the shockwave pressure propagation after the ammunition explosion. Therefore, it is particularly important to conduct reconstruction of the shockwave pressure field distribution laws based on limited measuring point data. This paper reviews the research work and related achievements obtained by researchers at home and abroad on the reconstruction of shockwave pressure distribution laws in explosion fields. The paper also elucidates the relevant application of computer tomography imaging techniques, shockwave propagation attenuation model reconstruction, and various interpolation algorithms in the reconstruction process of the shockwave pressure field. Given the current research situation both domestically and internationally, we have pinpointed the major issues that still exist in the current stage of research and proposed the key areas of focus that need attention in future research.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

Reference53 articles.

1. L. Q. Wang, F. Shang, and J. W. Zhang, “Research on numerical simulation experiment of high explosive damage power,” (in Chinese), Journal of Testing Technology, Vol. 29, No. 2, pp. 6–11, 2021, https://doi.org/10.3969/j.issn.1671-7449.2021.01.002

2. L. Q. Wang, F. Shang, and D. R. Kong, “Numerical simulation analysis of static and dynamic explosion shock wave,” (in Chinese), Journal of Weapon Equipment Engineering, Vol. 41, No. 12, pp. 208–213, 2020.

3. L. Q. Wang and D. R. Kong, “Overview of the impact of terrain environment on shock wave propagation,” (in Chinese), Foreign Electronic Measurement Technology, Vol. 41, No. 5, pp. 68–75, 2022, https://doi.org/10.19652/j.cnki.femt.2203709

4. J. Zu, T. H. Ma, and D. X. Pei, Dynamic Testing of New Concepts. (in Chinese), Beijing: National Defense Industry Press, 2016.

5. Y. Deng, X. G. Tao, and J. Zhao, “Research on fast algorithm of explosion shock wave propagation in complex tunnels,” (in Chinese), Journal of Underground Space and Engineering, Vol. 18, No. 4, pp. 1127–1137, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3