Fourier series method for the stability solution of simply supported thin beams on two-parameter elastic foundations of the Pasternak, Filonenko-Borodich, Hetenyi or Vlasov models

Author:

Ike Charles Chinwuba

Abstract

The analysis of stability problems of beams on two-parameter foundations (Bo2PFs) is an important part of their design for compressive loads. This work presents novel first principles derivation of the governing differential equations of elastic stability (GDES) of thin beams resting on two-parameter elastic foundations of the Pasternak, Filonenko-Borodich, Hetenyi or Vlasov models. The requirements of translational and rotational equilibrium of all the applied, reactive and internal forces on an infinitesimal segment of the Bo2PF and the laws of infinitesimal calculus were used to formulate the GDES as a fourth order ordinary differential equation (ODE) in terms of the transverse displacement function ux. The GDES is non-homogeneous in the presence of applied transverse load qx but homogeneous when qx vanishes. This study presents the Fourier series method (FSM) for solving the governing differential equation of stability (GDES) for the case of Dirichlet boundary conditions. The FSM has the advantage of amenability to differentiation, and integration due to the orthogonality properties of the sinusoidal functions. Implementation of the FSM by assuming the unknown function in the GDES as a Fourier series of infinite terms and the exploitation of orthogonalization simplifies the problem to an algebraic eigenvalue problem which is the characteristic buckling equation. The exact eigenvalues are found by algebraic solution of the buckling equation. The exact eigenvalues were used to find the exact buckling loads and the exact buckling load coefficients. The critical buckling load was found to correspond to the first buckling mode (n= 1), and is identical with previous solutions in the literature. Numerical calculations for the critical buckling load parameters Kcr were presented for the Bo2PF problem for values of the dimensionless foundation parameters k-1= 0, k-2= 0; k-1= 100, k-2= 0; k-1= 0, k-2= 1; k-1= 100, k-2= 100; k-1= 0, k-2= 2.5; k-1= 100, k-2= 2.5. The present solutions were compared with previous solutions for Kcr in the literature. The comparison shows that the present FSM results are identical with previous results obtained using various other methods such as Recursive Differentiation Method, Finite Element Method, Generalized Integral Transform Method (GITM) and Stodola-Vianello Iteration Method. The study has illustrated the effectiveness of the FSM for solving Bo2PFs.

Publisher

JVE International Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3