Author:
Nikolova Gergana,Dantchev Daniel,Tsveov Mihail
Abstract
Walking is one of the most crucial activities of humans. It is very important for their everyday life, working, shopping, going to jobs, for their well-being and also for communications with friends, relatives, social contacts, and similar. Of course, when the body changes the way people are walking changes too. This is something everybody anticipates to be true and believes to be true. The question is can we quantify this and how much actually changes with age in the way we do walking? This is the main issue we try to elucidate in our article. To do that we consider two groups aged 18-25 and aged 30-40 and analyse what are the basic changes during walking. We do that by creating a biomechanical model of the human body and its computer implementations within a CAD system. The model enables computer simulation and computer design for anthropomorphic robotic applications as well as for medical applications (orthopaedics, traumatology, orthotics, and prosthetics design), among other things.
Reference10 articles.
1. G. F. Harris and P. A. Smith, Human Motion Analysis: Current Applications and Future Directions. New York: IEEE Press Text, 1996.
2. W. Braune and O. Fischer, The Human Gait. Berlin, Heidelberg: Springer-Verlag, 1987.
3. D. Winter, The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. Canada: Waterloo Biomechanics Waterloo, 1991.
4. A. T. Asbeck, S. M. M. de Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, smarter, softer: next-generation wearable robots,” IEEE Robotics and Automation Magazine, Vol. 21, No. 4, pp. 22–33, Dec. 2014, https://doi.org/10.1109/mra.2014.2360283
5. G. S. Nikolova and Y. E. Toshev, “Estimation of male and female body segment parameters of the Bulgarian population using a 16-segmental mathematical model,” Journal of Biomechanics, Vol. 40, No. 16, pp. 3700–3707, Jan. 2007, https://doi.org/10.1016/j.jbiomech.2007.06.016