Author:
De Santis Yuri,Pancella Francesca,Pasca Dag Pasquale,Aloisio Angelo,Fragiacomo Massimo
Abstract
Timber floors are prone to vibration due to the reduced modulus of elasticity of the material. Composite floors represent the most convenient solution to achieve acceptable performances and at the same time to save material and cost. In determining the natural frequency of a composite floor, the stiffness of the connection between the joined structural member is crucial. Inclined screws connections are characterized by the highest slip modulus among the mechanical fastener connections. However, the determination of the optimal inclination angle of the screws for vibration and deflection reduction remains an unexplored issue. The optimization problem is faced by means of an analytical model of beam on foundation.
Reference6 articles.
1. A. Aloisio et al., “Vibration issues in timber structures: A state-of-the-art review,” Journal of Building Engineering, Vol. 76, p. 107098, Oct. 2023, https://doi.org/10.1016/j.jobe.2023.107098
2. P. G. G. D. Santos, C. E. J. Martins, J. Skinner, R. Harris, A. M. P. G. Dias, and L. M. C. Godinho, “Modal frequencies of a reinforced timber-concrete composite floor: testing and modeling,” Journal of Structural Engineering, Vol. 141, No. 11, Nov. 2015, https://doi.org/10.1061/(asce)st.1943-541x.0001275
3. K. Buka-Vaivade, D. Serdjuks, and L. Pakrastins, “Cost factor analysis for timber–concrete composite with a lightweight plywood rib floor panel,” Buildings, Vol. 12, No. 6, p. 761, Jun. 2022, https://doi.org/10.3390/buildings12060761
4. N. Vella, L. Gardner, and S. Buhagiar, “Experimental analysis of cold-formed steel-to-timber connections with inclined screws,” Structures, Vol. 24, pp. 890–904, Apr. 2020, https://doi.org/10.1016/j.istruc.2020.02.009
5. W.-S. Harris, R. Goldsmith, and T. Chang, “A new design method for timber floors – peak acceleration approach,” in International Network for Timber Engineering Research Meeting, 2018.