Study on vibration characteristics of structural components based on virtual reality technology

Author:

Wang Wei

Abstract

In order to more effectively and intuitively obtain the modal characteristics of steel structural components, a graphical analysis scheme is proposed based on dynamic testing, finite element simulation, and virtual reality technology. Based on the external excitation method, the vibration sensors and measurement point positions were reasonably arranged according to the number of nodes in the structural components. Through the data processing of the detection unit, the vibration response can be effectively obtained and provide a verification basis for the simulation results. The finite element software Midas Civil was used to model and analyze structural component models, and the results of the first five modes and natural frequencies were obtained. The structural data of modal analysis will be compared and integrated into the virtual environment model through VRML. Due to the ease of modifying the parameters of the virtual model, compared to traditional methods, it is faster and more accurate in detection and scientifically reasonable in control.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference5 articles.

1. W. Sun, H. Ma, and Z. Chen, “Multi-objective optimization of cylindrical shell structure with local viscoelastic damping patch for minimum vibration response and lightest attachment mass,” Structural and Multidisciplinary Optimization, Vol. 65, No. 11, pp. 1–28, Nov. 2022, https://doi.org/10.1007/s00158-022-03418-3

2. C. de O. Mendonça, U. A. Monteiro, R. H. R. Gutierrez, L. A. Vaz, J. Medeiros, and E. B. Tinoco, “Correction to: Prediction of vibration responses in a reciprocating compressor interstage piping system using the modal expansion method,” The International Journal of Advanced Manufacturing Technology, Vol. 119, No. 5-6, pp. 4091–4091, Mar. 2022, https://doi.org/10.1007/s00170-022-08876-z

3. V. Goel and N. Kumar, “Vibration response analysis of healthy and cracked gears through different signal processing techniques,” Vibroengineering PROCEDIA, Vol. 39, No. 3, pp. 43–47, Dec. 2021, https://doi.org/10.21595/vp.2021.22311

4. N. J. A. Egarguin, T. Meklachi, D. Onofrei, and N. D. Harari-Arnold, “Vibration suppression and defect detection schemes in 1D linear spring-mass systems,” Journal of Vibration Engineering and Technologies, Vol. 8, No. 4, pp. 489–503, Aug. 2020, https://doi.org/10.1007/s42417-019-00104-5

5. H. H. Chen et al., “Research on machining technology of complex structure parts of high-speed train body,” in Journal of Physics: Conference Series, Vol. 1721, No. 1, p. 012035, Jan. 2021, https://doi.org/10.1088/1742-6596/1721/1/012035

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3