Author:
Song Mei,Zheng Suining,Mi Haichen,Xu Peng,Zhang Chongshang
Abstract
Matrix and SBS modified asphalt mortar were prepared by replacing mineral powder with cement under different filler-asphalt ratios. The variation laws of ductility, softening point, penetration, cone penetration, and Brookfield rotational viscosity of the two kinds of pastes with filler-asphalt ratio were studied. The shear strength of the two kinds of asphalt mortar was calculated. And the viscosity-temperature curve was established. The best filler-asphalt ratio was recommended. The results show that the addition of cement and the increase of filler-asphalt ratio will reduce the ductility, penetration, and cone penetration of asphalt mortar, while improve the softening point, shear strength, and viscosity. In a specific range of filler-asphalt ratios, cement can improve the high-temperature performance of asphalt mortar without significant impact on the low-temperature performance.
Reference14 articles.
1. H. Chen, C. Niu, D. Kuang, J. Tian, and K. Yang, “Effects of fillers on viscoelastic response of recycled asphalt cement,” Journal of Zhengzhou University Engineering Science, Vol. 38, No. 2, pp. 72–77, 2017, https://doi.org/10.13705/j.issn.1671-6833.2017.02.016
2. H. T. T. Nguyen, T. V. Tu, V.-R. Phan, and B.-G. Phan, “Analysis of stress and strain in flexible pavement structures comprised of conventional and high modulus asphalt using viscoelastic theory,” in Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment, pp. 207–219, 2021, https://doi.org/10.1007/978-3-030-61118-7_18
3. H. Zhang, L. Meng, and G. Zhang, “Comparative study on mechanical performance of asphalt-cement mortar and emulsified asphalt-cement mortar,” Road Materials and Pavement Design, Vol. 18, No. 5, pp. 1239–1250, Sep. 2017, https://doi.org/10.1080/14680629.2016.1202857
4. G. Zeng, L. Liu, and F. Bai, “A damage-coupled viscoplastic model for compressed asphalt concrete,” in Journal of Physics: Conference Series, Vol. 1748, No. 6, p. 062059, Jan. 2021, https://doi.org/10.1088/1742-6596/1748/6/062059
5. J. Han, G. Zhao, X. Xiao, and X. Jin, “Effect of cement asphalt mortar damage location on dynamic behavior of high-speed track,” Advances in Mechanical Engineering, Vol. 10, No. 4, p. 168781401877077, Apr. 2018, https://doi.org/10.1177/1687814018770779