Enhancing static load test of pipe pile composite foundation with innovative elastic cushioning technology

Author:

Xu Fenqiang,Yao Yunlong,Li Qinghui,Shao Zhiwei,Wang Guisen

Abstract

Pipe piles have been widely used in composite foundation treatment by virtue of the advantages of assembly line production, easy control of pile quality, fast construction, high bearing capacity of single pile and green environmental protection. By introducing elastic cushion in the static load test method of pipe pile composite foundation, and using theoretical analysis and field test to study the change rule of settlement, pile-soil stress ratio and pile top stress of pipe pile composite foundation with different cushion stiffness. It is concluded that it is feasible to replace the sand cushion layer recommended by the current specification with elastic cushion layer. The study shows that the elastic cushion method of static load test of pipe pile composite foundation is closer to the bearing state of real working condition. The elastic cushion has better pile-soil stress adjustment effect, which is more responsive to the stress adjustment effect of actual engineering cushion, and the elastic cushion provides an improved method for the static load test method of composite foundation.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference11 articles.

1. R. Rui et al., “Simulation of working characteristics of composite foundation cushion based on Winkler foundation discrete element model,” (in Chinese), Journal of Architecture and Civil Engineering, Vol. 40, No. 1, pp. 123–132, 2023, https://doi.org/10.19815/j.jace.2021.09079

2. F. Han, E. Ganju, R. Salgado, and M. Prezzi, “Comparison of the load response of closed-ended and open-ended pipe piles driven in gravelly sand,” Acta Geotechnica, Vol. 14, No. 6, pp. 1785–1803, Dec. 2019, https://doi.org/10.1007/s11440-019-00863-1

3. P. Staubach, J. Machaček, J. Skowronek, and T. Wichtmann, “Vibratory pile driving in water-saturated sand: Back-analysis of model tests using a hydro-mechanically coupled CEL method,” Soils and Foundations, Vol. 61, No. 1, pp. 144–159, Feb. 2021, https://doi.org/10.1016/j.sandf.2020.11.005

4. Y. Zhou et al., “Pile-soil stress ratio and settlement of in-situ shallow solidification-combined pipe-pile composite foundation under embankment load,” (in Chinese), Rock and Soil Mechanics, Vol. 43, No. 3, pp. 688–696, 2022, https://doi.org/10.16285/j.rsm.2021.0730

5. G. L. Dai et al., “Experimental study on bearing performance of caisson-cushion-piles composite foundation under low cyclic loading,” (in Chinese), China Journal of Highway and Transport, Vol. 35, No. 7, pp. 142–153, 2022, https://doi.org/10.19721/j.cnki.1001-7372.2022.07.011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3