Uncertain optimization for composite base plate of mortar under impact load

Author:

Wang Fengfeng,Yang Guolai,Xu Fengjie

Abstract

Information warfare places higher requirements on the remoteness, precision and mobility of artillery weapon systems. As an indispensable and important category of artillery, mortar plays an important role. As an important component of mortar, the base plate bears tremendous impact load. Its design level has an important influence on the shooting stability, shooting accuracy and maneuverability of the mortar. Composite base plate helps improve the maneuverability of the mortar, but it will also make the force and movement rule of mortar launching more complex and lead to a more acute contradiction between artillery power and maneuverability, which propose a huge challenge to modern artillery optimization design theory. Under this background, this manuscript conducts research on the structural uncertain optimization of composite material base plate for the mortar. In order to obtain the optimal solution and reasonable interval of uncertain parameters with main dimension parameters, this manuscript uses interval model to carry out deterministic transformation for uncertain objective function and uncertain constraints, combines multi-objective genetic algorithm to solve the problem, and carries out numerical simulation to verify the optimal value. The result shows that the design idea and method are feasible for uncertain optimization of composite base sheet of mortar under impact load, and the optimization objectives and strategies are effective, which can provide reference for the uncertain optimization research of composite base plate.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference10 articles.

1. X. Wang, Optimal Design of a Large Caliber Mortar Base Plate Structure. Nanjing: Nanjing University of Technology, 2019.

2. X. Wang et al., “Lightweight design of mortar base plate,” (in Chinese), Journal of Artillery Launch and Control, Vol. 39, No. 4, pp. 54–59, 2018, https://doi.org/10.19323/j.issn.1673-6524.2018.04.011

3. F. Wang et al., “Research on the test and lightweight design of a mortar base plate,” (in Chinese), Vibration and Shock, Vol. 39, No. 17, pp. 76–81, 2020, https://doi.org/10.13465/j.cnki.jvs.2020.17.011

4. J. Ge, X. Xie, Q. Sun, and G. Yang, “Design and dynamic characteristics of a double-layer permanent-magnet buffer under intensive impact load,” Journal of Sound and Vibration, Vol. 506, No. 6, p. 116158, Aug. 2021, https://doi.org/10.1016/j.jsv.2021.116158

5. C. Wang and H. G. Matthies, “Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables,” Computer Methods in Applied Mechanics and Engineering, Vol. 355, pp. 438–455, Oct. 2019, https://doi.org/10.1016/j.cma.2019.06.036

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3