The effect of ambient temperature on the internal ballistic overload of a large-caliber artillery projectile fuze system

Author:

Yang Zilong,Kong Deren,Zhang Chunyan

Abstract

The change of ambient temperature will cause the change of gunpowder burning rate, which will directly affect the ballistic performance of the projectile and cause the change of the overload of the projectile fuze system. In this study, the numerical simulation program of the interior trajectory of a large-caliber gun was established by MATLAB, and the variation rules of the corresponding trajectory parameters at different temperatures were obtained. ANSYS finite element software is used to analyze the force of the projectile fuze system under different ambient temperatures. The results show that under the same loading conditions, with the increase of ambient temperature, the maximum pressure in the gun bore and the muzzle velocity of the projectile increase significantly, and the stress and strain of the projectile fuze system in the bore increase gradually. The numerical simulation results are in good agreement with the theory, which reveals the influence of ambient temperature on the overload in the bore of the projectile fuze system to a certain extent, and provides theoretical support for the study of internal ballistics, charge design and gun use.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference7 articles.

1. Z. S. Wang, W. D. He, and F. M. Xu, “Design principle and technology of artillery firing charge,” Beijing Institute of Technology Press, Beijing, 2014.

2. J. H. Yu, “Design and simulation of firing environment simulation test system for large caliber projectile fuze,” Nanjing University of Science and Technology, Jiangsu, 2017.

3. Y. J. Luo et al., “Method of reducing temperature coefficient of propellant charge,” Journal of Taiyuan Institute of Machinery, Vol. 15, pp. 4–6, 1994.

4. J. R. Osborn, J. P. Renie, and J. M. Murphy, “Effect of erosive burning on pressure and temperature sensitivity,” Acta Astronautica, Vol. 11, No. 7-8, pp. 459–467, Jul. 1984, https://doi.org/10.1016/0094-5765(84)90086-9

5. X. B. Zhang, “Ballistics in guns,” Beijing Institute of Technology, Beijing, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3