Automatic modal identification of bridges based on free vibrations and advanced signal decomposition techniques

Author:

Mazzeo Matteo,De Domenico Dario,Quaranta Giuseppe,Santoro Roberta

Abstract

Free vibration tests are attractive because they can be performed by means of a network consisting of few sensors temporarily installed on the structure in such a way to limit duration and cost of the experimental campaign. Additionally, free vibration tests are usually performed by introducing an initial perturbation that can induce a structural response significantly higher than the ambient excitation. This, in turn, allows to reduce the noise-to-signal ratio in the final measurements and/or to consider less stringent requirements about the technical specifications of the sensors. Since free vibration tests can provide accurate estimates of the modal parameters while being rather cheap and easy to implement, they have been performed in many applications, such as the experimental dynamic characterization of base-isolated buildings, masonry towers, ancient tie-rods, and bridges. An efficient and automatic computational framework is thus presented for the modal identification of bridges based on their free vibrations. The novel procedure proposed in the current work combines advanced signal decomposition techniques and a robust approach for damping identification. Two advanced signal decomposition techniques are considered, namely the Variational Mode Decomposition and the Empirical Fourier Decomposition. Experimental applications are then illustrated for roadway and railway bridges.

Publisher

JVE International Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3