Application of machine learning techniques for obesity prediction: a comparative study

Author:

Dirik Mahmut

Abstract

Obesity, characterized by excess adipose tissue, is becoming a major public health problem. This condition, caused primarily by unbalanced energy intake (overconsumption) and exacerbated by modern lifestyles such as physical inactivity and suboptimal dietary habits, is the harbinger of a variety of health disorders such as diabetes, cardiovascular disease, and certain cancers. Therefore, there is an urgent need to accurately diagnose and assess the extent of obesity in order to formulate and apply appropriate preventive measures and therapeutic interventions. However, the heterogeneous results of existing diagnostic techniques have triggered a fierce debate on the optimal approach to identifying and assessing obesity, thus complicating the search for a standard diagnostic and treatment method. This research primarily aims to use machine learning techniques to build a robust predictive model for identifying overweight or obese individuals. The proposed model, derived from a person's physical characteristics and dietary habits, was evaluated using a number of machine learning algorithms, including Multilayer Perceptron (MLP), Support Vector Machine (SVM), Fuzzy K-Nearest Neighbors (FuzzyNN), Fuzzy Unordered Rule Induction Algorithm (FURIA), Rough Sets (RS), Random Tree (RT), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Decision Table (DT). Subsequently, the developed models were evaluated using a number of evaluation measures such as correlation coefficient, accuracy, kappa statistic, mean absolute error, and mean square error. The hyperparameters of the model were properly calibrated to improve accuracy. The study revealed that the random forest model (RF) had the highest accuracy of 95.78 %, closely followed by the logistic regression model (LR) with 95.22 %. Other algorithms also produced satisfactory accuracy results but could not compete with the RF and LR models. This study suggests that the pragmatic application of the model could help physicians identify overweight or obese individuals and thus accelerate the early detection, prevention, and treatment of obesity-related diseases.

Publisher

JVE International Ltd.

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3