Design and accuracy test of polar moment of inertia measuring equipment for projectile and rocket

Author:

Sun Liwei,Wang Shukun,Wang Haokun,Zhao Weihong,Li Junye,Shang Chunmin

Abstract

The moment of inertia is an important mass characteristic parameter. It has a direct impact on the trajectory, flight stability, strike accuracy, and service life of the projectile. To meet the measurement of the polar moment of inertia of large projectiles and arrows, this paper uses the vibration compound pendulum method to measure the polar moment of inertia of large projectiles and arrows, deeply analyzes the measurement principle, and designs a polar moment of inertia test equipment. Through the measurement of standard samples, the measurement accuracy of the equipment is tested, and the causes of error are analyzed. The experimental results show that the maximum relative error is less than 0.5 %, and the relative uncertainty is 0.813 %, which meets the requirements of expected technical indicators.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference13 articles.

1. P. Chen, H. Wu, and L. Liu, “An improved design of measurement system of polar moment of inertia for missiles,” Journal of Projectiles, Rockets, Missiles and Guidance, Vol. 34, No. 3, pp. 12–14, 2014.

2. Zhao Yan et al., “Identification method for moment of inertia based on torsion pendulum,” Journal of Vibration, Measurement and Diagnosis, Vol. 34, No. 4, pp. 621–624, 2014.

3. C. Liu and W. Hou, “A rotational inertia of measurement error analysis,” Automation and Instrumentation, Vol. 2, pp. 106–107, 2011.

4. Q. Zha et al., “Study on the impact sensitivity of firing factors of self-propelled gun,” Journal of Vibration Engineering, Vol. 30, No. 6, pp. 938–946, 2017.

5. Y. Sun, “Approaches to improve the test accuracy of projectile pole moment of inertia,” Technology and Enterprise, Vol. 2013, No. 21, p. 351, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3