Author:
Wu Yanlin,Zhang Shuqiang,Zhu Wei,Nie Zongzhe
Abstract
Due to the inhomogeneity of the atmosphere, radio waves are subjected to refraction during the propagation process, which reduces its propagation speed and bends the propagation path. If the influence is not considered, a large error will be caused by using time difference of arrival (TDOA). The influence of atmospheric refraction on the TDOA localization under the known elevation constraint is analyzed, a subsection iterative method is proposed to correct the localization error caused by atmospheric refraction, the Cramer-Rao lower bound (CRLB) for location estimation under atmospheric refraction is deduced. The effectiveness of the proposed method is validated through simulation results and analysis.
Reference5 articles.
1. G. Huang, Z. X. Wang, and J. T. Gong, “Effects of atmospheric refraction on TDOA localization and correction,” Chinese Journal of Radio Science, pp. 303–306, 2011.
2. N. H. Nguyen and K. Doğançay, “Single-platform passive emitter localization with bearing and Doppler-shift measurements using pseudolinear estimation techniques,” Signal Processing, Vol. 125, pp. 336–348, Aug. 2016, https://doi.org/10.1016/j.sigpro.2016.01.023
3. W. Jiang, C. Xu, L. Pei, and W. Yu, “Multidimensional Scaling-Based TDOA Localization Scheme Using an Auxiliary Line,” IEEE Signal Processing Letters, Vol. 23, No. 4, pp. 546–550, Apr. 2016, https://doi.org/10.1109/lsp.2016.2537371
4. Z. Liu, Y. Zhao, D. Hu, and C. Liu, “A Moving Source Localization Method for Distributed Passive Sensor Using TDOA and FDOA Measurements,” International Journal of Antennas and Propagation, Vol. 2016, pp. 1–12, 2016, https://doi.org/10.1155/2016/8625039
5. G.-H. Zhu, D.-Z. Feng, H. Xie, and Y. Zhou, “An approximately efficient bi-iterative method for source position and velocity estimation using TDOA and FDOA measurements,” Signal Processing, Vol. 125, pp. 110–121, Aug. 2016, https://doi.org/10.1016/j.sigpro.2015.12.013