Research and design of program complexity measurement technology based on OINK framework

Author:

Qiao Liping,Zou Xuejun,Duan Rui,Jia Xueting

Abstract

With the expansion of software system scale, the study of software complexity has become a hot topic in software engineering. However, the domestic research on software complexity analysis technology is not mature, especially the measurement and evaluation methods of software complexity are not perfect. In order to solve the problem of prediction and evaluation of program structure complexity in software engineering more effectively, this paper proposed a program complexity measurement technique based on OINK framework. The technology uses the data sharing interface design to analysis target program by extracting the complex relationship between OINK components. On this basis, the technology adopts the layered software architecture to realize the automatic design of the function of the measurement data acquisition module, the complexity measurement module and the data management module of measurement results, thus, the structure complexity of the target program can be analyzed more clearly and accurately. At the same time, this technique applies multiple measurement methods to quantify the complexity of program structure, such as McCabe, HalStead, and Line Count. Experimental results show that this method can effectively measure the complexity of program structure. The solution on software complexity based on the open source ONIK framework will be open up worldwide, and will be continuously supported and improved by global communities and teams under the constraints of common driving forces.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,Modeling and Simulation

Reference14 articles.

1. Y. W. Tang, “Algorithm for introducing test complexity to improve the efficiency of software test management,” Business Herald, Vol. 21, pp. 29–30, 2015.

2. W. Wang, “Large-scale software complexity metrics based on complex networks,” Software, Vol. 36, No. 11, pp. 92–95, 2015.

3. S. Nalinee, “Complexity measure of software composition framework,” Journal of Software Engineering and Applications, No. 4, pp. 324–337, 2017.

4. E. Pira, V. Rafe, and A. Nikanjam, “Deadlock detection in complex software systems specified through graph transformation using Bayesian optimization algorithm,” Journal of Systems and Software, Vol. 131, pp. 181–200, Sep. 2017, https://doi.org/10.1016/j.jss.2017.05.128

5. B. Y. Wang, “Research on Complexity Measurement of software system architecture,” Software Guide, Vol. 9, No. 10, pp. 7–9, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3