Lightweight small target detection based on aerial remote sensing images

Author:

Li Muzi

Abstract

With the upgrading of aviation space technology, the amount of information contained in remote sensing images in the aviation is gradually increasing, and the detection technology based on small targets has developed. For lightweight small targets, pixels per unit area contain more information than large targets, and their area is too small, which is easily overlooked by conventional detection models. To enhance the attention of such algorithms, this study first introduces a Control Bus Attention Mechanism (CBAM) in the fifth generation You Only Look Once (YOLOv5) algorithm to increase the algorithm’s attention to small targets and generate optimization algorithms. Then convolutional neural network is used to mark feature pixels of the optimization algorithm, eliminate redundant information, and generate fusion algorithm, which is used to generate redundant information with high similarity when the optimization algorithm surveys pixel blocks. The novelty of this study lies in using CBAM to improve YOLOv5 algorithm. CBAM module can extract important features from images by adaptively learning the channel and spatial attention of feature maps. By weighting the channel and spatial attention of the feature map, the network can pay more attention to important features and suppress irrelevant background information. This attention mechanism can help the network better capture the characteristics of small targets and improve the accuracy and robustness of detection. Embedding CBAM module into YOLOv5 detection network can enhance the network's perception of small targets. CBAM module can improve the expressive ability and feature extraction ability of the network without increasing the complexity of the network. By introducing CBAM module, YOLOv5 can better capture the characteristics of small targets in aerial remote sensing images, and improve the detection accuracy and recall rate. Finally, the proposed fusion algorithm is used for experiments on the Tiny-Person dataset and compared with the fifth, sixth, and seventh generations of You Only Look Once. When the fusion algorithm tests the target, the classification accuracy of Sea-person is 39 %, the classification accuracy of Earth-person is 31 %, and the probability of being predicted as the background is 56 % and 67 %, respectively. And the overall accuracy of this algorithm is 0.987, which is the best among the four algorithms. The experimental results show that the fusion algorithm proposed in the study has precise positioning for lightweight small targets and can achieve good application results in aerial remote sensing images.

Publisher

JVE International Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3