Analysis of compression deformation of water-lubricated bearing material based on rigid and flexible substances coupled with microstructure

Author:

Li Ruiqing,Jin Yong,Ouyang Wu,Sun Shuang,Huang Jian,Luo Bin

Abstract

Water-lubricated bearings are pivotal components in ship propulsion shafting, The mechanical properties of composite materials serve as the foundation for water-lubricated bearing materials. In this paper, taking the 3D composite structure material of arthropod outer carapace as a biological model, a bionic design of a water-lubricated bearing composite material based on rigid and flexible substances coupled with microstructure is proposed, and its load-carrying properties are analyzed through simulation and experimentation. The research results showed that the rigid fiber helix angle of 30° would be better for enhancing mechanical performance. When the basic parameters of the RVE (representative volume elements) are determined, the arrangement of it will also affect the mechanical properties of the composite material to a certain extent, and from the test results, the three RVEs combination mode can obtain better bearing capacity.

Publisher

JVE International Ltd.

Reference20 articles.

1. S. Wu, “Lubrication performance and thermal structure coupled analysis of water-lubricated rubber alloy slab bearings,” Chongqing University, Chongqing, 2011.

2. Y. Jin et al., “Feature recognition on friction induced vibration of water-lubricated bearing under low speed and heavy load,” Journal of Marine Science and Engineering, Vol. 11, No. 3, p. 465, Feb. 2023, https://doi.org/10.3390/jmse11030465

3. X.-R. Zhou, “Experimental study on friction and wear of nano-sized molybdenum disulfide water-lubricated rubber-plastic stern bearings,” Wuhan University of Technology, Wuhan, 2017.

4. K.-J. Wu, “Multiscale mechanical design of high-performance structures inspired by “spear and shield”-type biological competition,” University of Science and Technology of China, Hefei, 2021.

5. J.-X. Wang, Z. Chen, and D.-T. Qing, “Study on friction properties of water lubricated plastic bearing,” Mechanical Engineering Materials, Vol. 11, pp. 36–38, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3