Author:
Zhang Honggang,Chen Rui,Gu Xiaomei
Abstract
As the industrial sector develops, the performance requirements for aluminum alloys are also constantly improving. The study explores how aging and rolling treatment affect aluminum alloys' precipitates and mechanical properties by controlling the parameters of aging process and rolling deformation variables. 7N01 aluminum alloy was selected as the experimental object, and the samples were treated with non-aging, natural aging, artificial aging, and rolling deformation. How aging processes and rolling deforming affected alloys’ mechanical properties was evaluated through performance testing (mechanical and tensile testing) and material fiber characterization methods (advanced electronic instruments). These results confirmed that the combination of three aging pre-treatments + R20 % + 120 °C re-aging could significantly improve the hardness of aluminum alloys and maintain high ductility. As the deformation decreased, the time for the sample to reach the hardness peak was shorter and the hardness was higher. The 20 % deformation sample’s strength was better than the 80 % deformation sample’s. This confirmed that appropriate aging process and deformation combinations could improve the strength and hardness of aluminum alloys. These results have certain guiding significance for optimizing the aging process of mechanical extruded aluminum alloys and provide reference for the study of related alloy properties.