Author:
Liang Guo,Haichao Zhu,Rongfu Mao,Junbo Su,Changwei Su
Abstract
In order to solve the problems of near-field acoustic holography in applications such as external interference and aperture effects, a sound field separation technique using the principle of double layer patch acoustic radiation modes is proposed in this paper. The radiated acoustic pressures over two planar surfaces at certain distances from the sources are calculated first. Then, the effects resulting from the backscattering interference in non-free sound fields can be eliminated by a double-layer sound field separation technique. Next, data interpolation and extrapolation are performed on the separated data to increase the sound source's pressures on the holographic plane equivalently for holographic images with higher spatial resolution. Simulation and experimental results demonstrate that good agreements can be obtained with few measuring points.
Subject
Mechanical Engineering,General Materials Science
Reference30 articles.
1. Williams E. G. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, London, 1999.
2. Wang R., Chen J., Jia W. Q., et al. Acoustic field separation technique with single holographic plane based on wave superposition algorithm and statistically optimal near field acoustical holograph. Journal of Vibration and Shock, Vol. 31, Issue 22, 2009, p. 112-117.
3. Hallman D. L., Bolton J. S. A technique for performing source identification in reflective environments by using nearfield acoustic holography. Proceedings of NoiseCon, Williamsburg, VA, 1993.
4. Jacobsen F., Chen X. Y., Jaud V. A comparison of statistically optimized near field acoustic holography using single layer pressure-velocity measurements and using double layer pressure measurements. The Journal of the Acoustical Society of America, Vol. 123, Issue 4, 2008, p. 1842-1845.
5. Fernandez-Grande E., Jacobsen F. Sound field separation with a double layer velocity transducer array. The Journal of the Acoustical Society of America, Vol. 130, Issue 1, 2011, p. 5-8.