Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform

Author:

Heidari Mohammad,Homaei Hadi,Golestanian Hossein,Heidari Ali

Abstract

This work focuses on a method which experimentally recognizes faults of gearboxes using wavelet packet and two support vector machine models. Two wavelet selection criteria are used. Some statistical features of wavelet packet coefficients of vibration signals are selected. The optimal decomposition level of wavelet is selected based on the Maximum Energy to Shannon Entropy ratio criteria. In addition to this, Energy and Shannon Entropy of the wavelet coefficients are used as two new features along with other statistical parameters as input of the classifier. Eventually, the gearbox faults are classified using these statistical features as input to least square support vector machine (LSSVM) and wavelet support vector machine (WSVM). Some kernel functions and multi kernel function as a new method are used with three strategies for multi classification of gearboxes. The results of fault classification demonstrate that the WSVM identified the fault categories of gearbox more accurately and has a better diagnosis performance as compared to the LSSVM.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3