Author:
Heidari Mohammad,Homaei Hadi,Golestanian Hossein,Heidari Ali
Abstract
This work focuses on a method which experimentally recognizes faults of gearboxes using wavelet packet and two support vector machine models. Two wavelet selection criteria are used. Some statistical features of wavelet packet coefficients of vibration signals are selected. The optimal decomposition level of wavelet is selected based on the Maximum Energy to Shannon Entropy ratio criteria. In addition to this, Energy and Shannon Entropy of the wavelet coefficients are used as two new features along with other statistical parameters as input of the classifier. Eventually, the gearbox faults are classified using these statistical features as input to least square support vector machine (LSSVM) and wavelet support vector machine (WSVM). Some kernel functions and multi kernel function as a new method are used with three strategies for multi classification of gearboxes. The results of fault classification demonstrate that the WSVM identified the fault categories of gearbox more accurately and has a better diagnosis performance as compared to the LSSVM.
Subject
Mechanical Engineering,General Materials Science
Reference40 articles.
1. Tran V. T., Yang B. S. An intelligent condition-based maintenance platform for rotating machinery. Expert Systems with Applications, Vol. 39, 2012, p. 2977-2988.
2. Melter G., Dien N. P. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude. Mechanical Systems and Signal Processing, Vol. 18, Issue 5, 2004, p. 985-992.
3. McFadden P. D. A revised model for the extraction of periodic waveforms by time domain averaging. Mechanical Systems and Signal Processing, Vol. 7, 1993, p. 193-203.
4. Combet F., Gelman L. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor. Mechanical Systems and Signal Processing, Vol. 21, 2007, p. 2590-2606.
5. Minamihara H., Nishimura M., Takakuwa Y., Ohta M. A method of detection of the correlation function and frequency power spectrum for random noise or vibration with amplitude limitation. Journal of Sound and Vibration, Vol. 141, Issue 3, 1990, p. 425-434.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献