Novo algoritmo ensemble para detecção de fraude em transações de cartão de crédito

Author:

Miguel de Souza Daniel HenriqueORCID,Bordin Júnior Claudio José

Abstract

Transações fraudulentas em operações com cartão de crédito geram perdas financeiras expressivas, incentivando o desenvolvimento de algoritmos capazes de detectá-las. Nesta linha, propõem-se neste artigo novas técnicas de aprendizado de máquina para a solução de problemas de detecção binária com classes desbalanceadas, ou seja, para os quais uma das classes (e.g., ocorrência de uma fraude) é bem menos frequente que a outra. As técnicas propostas combinam classificadores de formulações distintas, treinados com conjuntos de dados obtidos através de diferentes formas de amostragem. A combinação de classificadores é realizada através de voto majoritário ou do novo esquema de voto singelo, que visa aumentar a taxa de detecção de fraude. Os algoritmos propostos tiveram os seus desempenhos avaliados através de simulações numéricas utilizando dados de transações financeiras reais. Os resultados das simulações indicaram que os novos algoritmos exibem métricas de detecção vantajosas em relação a técnicas do estado-da-arte.

Publisher

Universidade Tecnologica Federal do Parana (UTFPR)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3