Location-Based Mobile Community Using Ants-Based Cluster Algorithm

Author:

Srisa-an Chetneti

Abstract

A location based service (LBS) is widely used on modern smartphone around the world asits built-in features. Each smartphone can access a google API or map. People can therefore share their location (latitude and longitude) among friends. Many LBS spots can easily form “location based mobile community (LBMC).” Since the nodes are mobile, the community group changes dynamically and is unstructured. Ant-based clustering algorithm is a special kind of optimization technique which is highly suitable for finding the adaptive clustering for volatile networks. This Paper Aims To form a location based mobile community (LBMC) by using Ant-based clustering algorithm. Due to the mobile type community, a vanishing community problem is also stated in this paper. Instead of redo a whole algorithm again, we modify an original algorithm by applying a pheromone concept to handle a change. Our algorithm is named as ABCA & VP which stands for Ant-Based Clustering Algorithm with Vanishing problem. More than 5,000 samples from their latitude and longitude coordinates in Thailand. From an experiment, K-means clustering work well in small data size and low number of clusters. In Small size of data between 50 and 1000, our algorithm runs battery when a number of clusters reach 15 clusters. In a big data size (between 1,000 and 5,000 samples), our algorithm outperforms K-means clustering when a number of clusters reach 20 clusters.

Publisher

Bright Publisher

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the Effectiveness and Efficiency of A Website Using Cognitive Walkthrough Method;2023 11th International Conference on Cyber and IT Service Management (CITSM);2023-11-10

2. Comparison of the Indobert Optimization Hyperparameter Algorithm for Radicalism Sentiment Analysis;2023 11th International Conference on Cyber and IT Service Management (CITSM);2023-11-10

3. E-government Public Complaints Text Classification Using Particle Swarm Optimization in Naive Bayes Algorithm;2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom);2022-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3