A Review of Deep Transfer Learning Strategy for Energy Forecasting

Author:

Sankari S. Siva,Kumar P. Senthil

Abstract

Over the past decades, energy forecasting has attracted many researchers. The electrification of the modern world influences the necessity of electricity load, wind energy, and solar energy forecasting in power sectors. Energy demand increases with the increase in population. The energy has inherent characteristics like volatility and uncertainty. So, the design of accurate energy forecasting is a critical task. The electricity load, wind, and solar energy are important for maintaining the energy supply-demand equilibrium non-conventionally. Energy demand can be handled effectively using accurate load, wind, and solar energy forecasting. It helps to maintain a sustainable environment by meeting the energy requirements accurately. The limitation in the availability of sufficient data becomes a hindrance to achieving accurate energy forecasting. The transfer learning strategy supports overcoming the hindrance by transferring the knowledge from the models of similar domains where sufficient data is available for training. The present study focuses on the importance of energy forecasting, discusses the basics of transfer learning, and describes the significance of transfer learning in load forecasting, wind energy forecasting, and solar energy forecasting. It also explores the reviews of work done by various researchers in electricity load forecasting, wind energy forecasting, and solar energy forecasting. It explores how the researchers utilized the transfer learning concepts and overcame the limitations of designing accurate electricity load, wind energy, and solar energy forecasting models.

Publisher

Technoscience Publications

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Pollution

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis on Solar Panel Defect Detection Using Deep Learning Approaches;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3