Sulfate Reducing Bacteria: A Way Forward Towards Sustainable Mining

Author:

Nirlipta P. Nayak1

Affiliation:

1. University of Petroleum & Energy Studies

Abstract

Mineral exploitation and mining are expanding with increasing industrialization, and as exploitation increases, so will their enormous environmental impact. The biological technique was found to be a suitable alternative for treating mine wastes and recovering toxic heavy metals. Acid Mine Drainage (AMD) or Acid Rock Drainage (ARD) is the most wellknown mining waste laden with heavy metals that remains untreated. Microorganisms help in detoxification and thereby facilitate the extraction of pollutants from mine waste. Sulfate Reducing Bacteria (SRB), among all known microorganisms, play an important role in mine waste treatment by neutralizing acidity and reviving alkalinity. The use of microorganisms in treating overburden dumps helps reduce the amount of waste, augment natural resources via metal recovery, and maintain a healthy environment. Such a technique picks up momentum due to its low cost, easy availability of ingredients, and eco-friendly nature. Such a treatment system may or may not be capable of removing toxicity. Therefore, it is advisable to use the same along with other techniques depending upon site conditions, the nature of the deposit, and the availability of essential requisites. This paper attempted to highlight potential thrust areas requiring this technique as well as limiting factors.

Publisher

i-manager Publications

Subject

Environmental Engineering

Reference20 articles.

1. Process engineering aspects of the bioleaching of copper ores

2. Recent advances in microbial mining

3. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

4. Brierley, C. L. (1979). Effect of hydrogen peroxide on leach dump bacteria. AIME Transactions, 266, 1860- 1863.

5. Bryant, R. S. (1987, February). Potential uses of microorganisms in petroleum recovery technology. In Proceedings of the Oklahoma Academy of Science, 67, 97-104.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3