A novel approach for lung cancer detection using deep belief networks

Author:

Sangeeta Devi1,Pranjal Maurya1,Rajan Kumar Yadav1,Munish Saran1,Upendra Nath Tripathi1

Affiliation:

1. Deen Dayal Upadhyaya Gorakhpur University

Abstract

Due to the increased awareness of lung cancer, researchers have created many algorithms that can recognise the disease in its early stages using a variety of Machine Learning (ML) techniques. Clinicians can manage incidental or screen-found ambiguous pulmonary nodules with the help of machine learning-based models for lung cancer prediction. Such methods might be able to lower the variability in nodule classification, enhance decision making, and eventually decrease the proportion of benign nodules that do not need to be followed. This study proposes a novel lung cancer detection method based on Magnetic Resonance Imaging (MRI). Using ML to classify features in MRI scans, this technology is useful for the early detection of lung cancer. The performance was further enhanced using featureselection methodologies. The images were divided into segments using the FBSO feature selection method, and deep learning techniques were used to analyze the three standard datasets, S1, S2 and S3. In this investigation, 98.9% classifier optimality and 96.7% accuracy were attained. This new approach demonstrated excellent dependability and was found to be the most effective classifier system compared with previous studies.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3