A distinctive ensemble deep learning model for brain tumor MRI image classification

Author:

Narasimha Rao Thota1,Vasumathi D.2

Affiliation:

1. JNTUK University

2. JNTUH University

Abstract

Brain tumor detection is challenging for radiologists. The early detection of brain tumors is critical, and automated techniques are necessary to achieve this goal. In this study, an automated method is proposed to distinguish between malignant and non-cancerous brain Magnetic Resonance Images (MRI). An ensemble technique was proposed that includes two Deep Learning (DL) models, a 6-Convolutional Neural Network (6-CNN) model with an efficient end-to-end, and a pre-trained Residual Network50 (ResNet50) model. The MRI image classification was experimented in two directions: one using the average probabilities of the ensemble model, and the other considering the optimal weights of the ensemble model for a Support Vector Machine (SVM) classifier with different kernels. Two datasets, Harvard and Retrospective Image Registration Evaluation (RIDER), were used to evaluate the performance of the proposed model. The 6-CNN-ResNet-SVM model achieved the highest accuracy of 97.32% for 10-fold validation, with the remaining performance metrics being an Area Under the Curve (AUC) of 0.98%, sensitivity of 93.62%, specificity of 98%, False Negative Rate (FNR) of 0.06, and False Positive Rate (FPR) of 0.00 for the linear kernel. The proposed model can identify tumors more accurately and quickly than existing approaches.

Publisher

i-manager Publications

Reference49 articles.

1. A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned

2. Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine

3. Brain tumor segmentation based on a hybrid clustering technique

4. Armato, S., Beichel, R., Bidaut, L., Clarke, L., Croft, B., Fenimore, C., ... & Kinahan, P. (2008). RIDER (Reference database to evaluate response) committee combined report 9/25/2008 sponsored by NIH NCI CIP ITDB causes of and methods for estimating/ameliorating Variance in the Evaluation of Tumor Change in Response to Therapy CT Volume. Academic Radiology, 84(1), 1-14.

5. Bandhyopadhyay, S. K., & Paul, T. U. (2013). Automatic segmentation of brain tumour from multiple images of brain MRI. International Journal of Application or Innovation in Engineering & Management, 2(1), 240-280.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3