Resume screener system

Author:

Muhammad Savad N.1,Preethi T.2

Affiliation:

1. Nilgiri College of Arts and Science (Autonomous)

2. Nilgiri College of Arts and Science(Autonomous)

Abstract

This research paper introduces a state-of-the-art "Resume Screener System" aimed at revolutionizing and automating the labor-intensive task of resume analysis for recruitment purposes. Developed using Python, the system integrates Artificial Intelligence and Natural Language Processing techniques to streamline the hiring process. Utilizing a dataset sourced from Kaggle, comprising a thousand resumes converted into textual data, the system undergoes comprehensive model training and evaluation. Employing advanced machine learning methodologies such as the Support Vector Classifier (SVC) and Neighbours Classifier, the system rigorously tests and analyzes these models to determine the most effective approach. By evaluating each model's performance against predefined criteria, the system identifies the optimal model for resume screening. The primary objective of this work is to provide recruiters and HR professionals with an innovative tool that efficiently matches job requirements with candidates' skill sets as presented in their resumes. By automating the initial screening phase, the system not only saves time and effort but also ensures a more objective and consistent evaluation of applicants. This research contributes to the advancement of machine learning applications in the field of human resources, illustrating the transformative impact of technology on traditional hiring practices.

Publisher

i-manager Publications

Reference13 articles.

1. Web Application for Screening Resume

2. Empowering Candidates with Experience Sharing and Advanced Resume Screening - A Comprehensive Survey

3. A Novel Knowledge Extraction Framework for Resumes Based on Text Classifier

4. Fazel-Zarandi, M., & Fox, M. S. (2009, October). Semantic matchmaking for job recruitment: An ontologyth based hybrid approach. In Proceedings of the 8th International Semantic Web Conference, 525 (1), 1-14.

5. MatchingSem: Online recruitment system based on multiple semantic resources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3