A comprehensive review of visible light communication (VLC)

Author:

Sherlin S.1

Affiliation:

1. Government College of Engineering

Abstract

Visible Light Communication (VLC) represents a revolutionary approach in the realm of wireless communication, capitalizing on the dual functionality of Light Emitting Diodes (LEDs) for both illumination and high-speed data transmission. The advent of LEDs has not only transformed lighting systems but has also paved the way for innovative communication technologies. The seamless integration of illumination and data transmission in VLC offers a unique solution to the growing demand for efficient and high-speed wireless communication. In recent years, the field of visible light communication has witnessed remarkable progress, fueled by the exploration and refinement of its constituent elements. Researchers have been actively addressing challenges associated with VLC, such as signal interference, mobility issues, and the need for standardized protocols. This ongoing pursuit of solutions has led to the development of increasingly robust VLC systems, positioning them as promising contenders for future communication technologies. This paper endeavors to provide a comprehensive overview of VLC, delving into the intricacies of its underlying challenges and the innovative solutions that researchers have proposed to overcome them. By examining recent research trends, the paper aims to highlight the evolving landscape of VLC technology, showcasing its potential for revolutionizing optical wireless communication. As VLC continues to mature, it is essential to explore the current state of the technology, anticipate future advancements, and contribute to the collective knowledge shaping the trajectory of visible light communication.

Publisher

i-manager Publications

Reference18 articles.

1. Low-complexity Visible Light Networking with LED-to-LED communication

2. Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode

3. Horikawa, S., Komine, T., & Haruyama. S. (2004). Pervasive visible light positioning system using white LED lighting. IEICE Technical Report, 103 (721), 93-99.

4. Huang, X., Chen, B., & Roscoe, A. W. (2012a, November). Multi-channel key distribution protocols using visible light communications in body sensor networks. In Computer Science Student Conference 2012 (pp. 1-37).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3