Feature extraction and classification of different hand movements from the emg signal using linear discriminant analysis classifier

Author:

Prasad V. V. K. D. V.1,Nagasirisha B.1,Janitha Joycy Y.1,Venkatesh Naik R.1,Lalithadithya Naga Sai B.1,Ramya T.1

Affiliation:

1. Seshadri Rao Gudlavalleru Engineering College

Abstract

In biomedical research, Electromyography (EMG) data play a crucial role as a bridge between human motions and machine interpretation, offering valuable insights into muscle activation. EMG signals give vital information on hand movements in the context of applications like gesture recognition, prosthetic control, and rehabilitation. This paper describes the classification of EMG signals based on muscle motions, which makes it simpler to identify distinct gestures or movements. A Linear Discriminant Analysis (LDA) classifier is used to differentiate between various classes of muscle activity. In order to record EMG signals during hand motions, surface electrodes are carefully positioned on pertinent muscles. Muscle activity may be tracked in real time with these non-invasive electrodes. In order to extract meaningful information from these signals, which are complex and frequently contaminated by noise, strong feature extraction techniques are needed. When working with noisy signals, denoising is a commonly used approach to restoring the original quality of the source data. It attempts to maintain relevant information by reducing noise in the raw EMG signals. In order to retrieve only the pertinent information from the original EMG signal data, any unnecessary noise must first be removed. Through the identification of key characteristics in the time, frequency, and time-frequency domains, it transforms unstructured EMG data. This procedure improves the next step of classification, which is the identification and classification of patterns in the EMG signals. Ultimately, the obtained information is employed to classify signals by the Linear Discriminant Analysis (LDA) classifier, demonstrating a distinction between various muscle motions with over 80% accuracy.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3