Cholera detection system using CNN machine learning algorithm

Author:

Chikondi Zakeyu1,Fanny Chatola1

Affiliation:

1. DMI-St John the Baptist University

Abstract

A comprehensive cholera detection system leveraging cutting-edge technologies such as neural networks, machine learning, chatbots, live maps, and real-time statistical graphs is proposed. The system integrates a user-friendly chatbot interface to interact with individuals, prompting them to input relevant health information and symptoms. Behind the scenes, neural networks and machine learning algorithms analyze the data to detect potential cholera cases, offering users instant insights into their health status. The system incorporates live maps to track reported cases geographically, enabling a swift response from health authorities. Moreover, real-time statistical graphs provide dynamic visualizations of cholera trends, aiding in the identification of potential outbreak hotspots. By amalgamating these technologies, the cholera detection system not only facilitates early diagnosis and intervention but also enhances public health monitoring and management, contributing to the overall control and prevention of cholera outbreaks.

Publisher

i-manager Publications

Reference10 articles.

1. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables

2. Knowledge-Based System Architecture on CBR for Detection of Cholera Disease

3. Delaurenti, C. V. (2017). Cholera framework report. International Federation of Red Cross and Red Crescent Societies (pp. 1-58).

4. Cholera transmission dynamic models for public health practitioners

5. Leo, J. (2020). A Reference Machine Learning Model for Prediction of Cholera Epidemics Based-On Seasonal Weather Changes Linkages in Tanzania (Doctoral dissertation, NM-AIST).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3