Wasserstein GAN-gradient penalty with deep transfer learning based alzheimer disease classification on 3D MRI scans

Author:

Narasimha Rao Thota1,Vasumathi D.2

Affiliation:

1. JNTUK University, Kakinada

2. JNTUH CEH

Abstract

There has been growing interest in using neuroimaging data, such as MRI scans, for the detection of Alzheimer's Disease (AD). Computer vision and deep learning models have shown promise in developing effective Computer-Aided Diagnosis (CAD) models for AD detection and classification. However, many existing models struggle due to their reliance on large training datasets and effective hyper parameter tuning strategies. To address these issues, transfer learning is often used to adjust the final fully connected layers of pre-trained DL models for use with smaller datasets. This paper proposes a new AD classification model based on a combination of Wasserstein GAN-Gradient Penalty (WGANGP) and Deep Transfer Learning (DTL) techniques, aimed at achieving accurate identification and classification of AD on 3D MRI scans. The WGANGP technique is used to increase the size of the dataset, and the model utilizes image enhancement and 3D Spatial Fuzzy C-means (3DS-FCM) techniques for image segmentation. Additionally, feature extraction is performed using the Ant Lion Optimizer (ALO) with the Inception v3 model, while the Deep Belief Network (DBN) model is employed for AD classification. The experimental validation of the WGANGP-DTL model is conducted using a benchmark 3D MRI dataset, and the results show that the proposed model outperforms recent approaches in several aspects.

Publisher

i-manager Publications

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DcGAN and EfficientNetB3 Based Analysis and Detection of Alzheimer Detection Using MRI Images;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3