Comparison of artificial neural networks and multiple linear regression model in the prediction of near-earth objects minimum distance to the earth

Author:

Ekanayake A. J.1,Chandrasekara N. V.1

Affiliation:

1. University of Kelaniya

Abstract

Near Earth Objects (NEO), commonly known as asteroids, are always moving in outer space. These objects could carry very important knowledge or harmful substances. Knowing the whereabouts of an asteroid makes observation easier since asteroids are moving and, in a limited time, an asteroid will pass the observable distance from the Earth. This study has compared the minimum distance prediction of near-earth objects and the Earth using artificial neural networks, machine learning, and multiple linear regression techniques. The models used in the study are the Multiple Linear Regression Model, Feed Forward Neural Network, and Support Vector Regression Model. The study has used a secondary dataset provided by the “Center for Near Earth Object Studies” (CNEOS) project of NASA. Using every method, two models were trained for each. Every model 1 contained all the variables and every model 2 contained three dependent variables. For model 2, dependent variables were reduced by the assumptions used in linear regression. Even though the linear assumptions were not used on the neural networks or machine learning algorithms, every model 2 showed a significant accuracy increase after variable reduction. Model performances were assessed by multiple prediction error values and R-squared values.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3