Feature reduction techniques based code smell prediction

Author:

Pravin Singh Yadav1,Rajwant Singh Rao1

Affiliation:

1. Guru Ghasidas Vishwavidyalaya

Abstract

Code Smell refers to the telltale signs of poor code design that leads to software quality issues. Developers require specific methods to measure the complexity of Code Smells in order to resolve the problem quickly. Recent research has examined the problem of predicting Code Smell using various detection methods. However, the accuracy of machine learning-based Code Smell detectors is still at a normal level. One of the main objective of this paper is to assess how well dimensionality reduction methods can predict Code Smells. This paper uses three machine learning techniques with feature reduction techniques, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Linear Discriminate Analysis (LDA). Ten-fold cross-validation is used to ensure that the model is well-trained. Datasets are balanced using the Synthetic Minority Oversampling Technique (SMOTE) to ensure an equal number of classes in each dataset. The experimental result concluded that the AdaBoost method with LDA performs better in both the Long Parameter List and Switch Statement datasets, with an accuracy of 92.72% and 91.24%, respectively.

Publisher

i-manager Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3