Big data cluster tendency techniques with spectral features for efficient data partitions assessment

Author:

Rajasekhar Pinisetty1,Ravindranath V.1

Affiliation:

1. Jawaharlal Nehru Technological University

Abstract

Cluster tendency assessment in big data poses a challenge, particularly for non-compact separated (non-CS) datasets with irregular boundaries. This paper introduces a novel Spectral-Based Visual Technique (SVT) to address this limitation. Determining the similarity features for the data objects is a crucial computation in data clustering. Distance measures such as Euclidean and cosine are widely employed in clustering applications. By pre-determining cluster tendency, the quality of clusters is obtained using the algorithms of Visual Assessment of Cluster Tendency (VAT) and cosine-based VAT (cVAT). Both VAT and cVAT utilize Euclidean and cosine distance measures to identify the similarity features of objects. For extensive data cluster tendency assessment, an extended concept of VAT, Clustering using Improved Visual Assessment of Tendency (ClusiVAT), is employed to derive clusters with scalable amounts of time and memory loads. However, it operates efficiently for Compactly Separated (CS) datasets. The research gap lies in the need to deliver the quality of big data partitions (or clusters) for non-compact separated (non-CS) datasets. Thus, this paper proposes a spectral-based visual cluster tendency technique to address the challenge of significant data clustering for non-CS datasets. Experimental analysis employs benchmarked datasets to illustrate the performance of the proposed work compared to other techniques.

Publisher

i-manager Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3