Mathematical Modelling of EOR Methods

Author:

Tirumala Rao Kotini1,Aman Singh1

Affiliation:

1. UPES

Abstract

The choice of appropriate and affordable procedures to boost oil recovery is usually recognized as one of the main challenges in reservoir development due to the huge demand for crude oil. Reservoir flow simulators are valuable tools for understanding and forecasting fluid flow in complex systems. The goal of this study is to run a mathematical model to evaluate the performance of various oil recovery methods, as well as to validate the model's accuracy with simulated field data. Thereby, the results of this developed model indicate that the model is approximately matched with the simulated field data. Enhanced oil recovery typically refers to chemical, miscible, thermal, and microbial processes. A system of nonlinear partial differential equations composed of Darcy's and mass conservation equations governs the model. The system is then numerically solved using the IMPEC (Implicit Pressure and Explicit Concentration) scheme by a finite difference method. We chose this approach because the experimental approaches are not only time consuming, but also costly. As a result, mathematical models could aid in the understanding of a reservoir and how such processes can be optimized to maximize oil recovery while lowering production costs. This paper provides a brief overview of mathematical modelling of various enhanced oil recovery methods, focusing on developing a generalized framework and describing some of the key challenges and opportunities.

Publisher

i-manager Publications

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

Reference25 articles.

1. Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover Publishing, New York.

2. Babalyan, G. A., Levy, B. I., Tumasyan, A. B., & Khalimov, E. M. (1983). Oilfield Development using Surfactants. Nedra, Moscow.

3. Lake, L. W. (1989). Enhanced Oil Recovery. Prentice-Hall, Inc.

4. Introduction to polymer flooding

5. Latil, M. (1980). Enhanced Oil Recovery. Éditions Technip.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3