Delay margin computation of load frequency control system with demand response and constant communication delays

Author:

Jawahar A.1,Ramakrishanan K.1

Affiliation:

1. Pondicherry Engineering College

Abstract

The paper aims to present a comprehensive delay-dependent stability analysis technique of a networked single area Load Frequency Control (LFC) systems integrated with demand response. Demand Response (DR) has been an integral part of power system control and operation. The time-delays in LFC schemes are due to the utilization of communication channels for signal transmission among the various sub-systems and control center. The deterioration of the dynamic performance of the system is the most feasible effect of time-delays and at the worst these delays lead to instability. Therefore, the computation of delay margins for a stable operation of the single-area LFC system with DR control is crucial. A less conservative stability criterion using Lyapunov approach is derived in linear matrix inequality framework for determining the stability of closed loop LFC system under study. The stability criterion is tested for different subsets of the controller parameters and participation factors using standard benchmark system. Through extensive simulation results, the analytical results are validated. The time domain simulation results indicate the effectiveness of the analytical results.

Publisher

i-manager Publications

Subject

Building and Construction

Reference28 articles.

1. A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges

2. Demand Dispatch

3. Gain margins and phase margins for control systems with adjustable parameters

4. A new method for computing delay margins for stability of linear delay systems

5. Energy.gov. (n.d.). Grid Modernization and the Smart Grid Office of Electricity. Retrieved from https://www. energy.gov/oe/activities/technology-development/gridmodernization- and-smart-grid

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3