Comparative analysis of Finite Difference Method (FDM) and Physics-Informed Neural Networks (PINNs)

Author:

Wasif Khan1,Shahbaz Ahmad1

Affiliation:

1. Government College University

Abstract

In this analysis, the solutions of the Linear and Non-Linear models are explored and compared using two distinct methods: the Finite Difference Method (FDM) and the Physics-Informed Neural Networks (PINNs). Initially, the solution is derived employing the principles of FDM, followed by solving the same problem using the methodology of PINNs. Subsequently, a comparative examination of the solution graphs with the exact solution is conducted.

Publisher

i-manager Publications

Reference30 articles.

1. Two new preconditioners for mean curvature-based image deblurring problem

2. Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18(153), 1-43.

3. Three ways to solve partial differential equations with neural networks — A review

4. NeuroDiffEq: A Python package for solving differential equations with neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3