Characterization of Copper MMC Reinforced with SiC and Graphite in Equal Proportion Made by the Powder Metallurgy Route

Author:

Rama Krishna Varma Lanke1,Srinivasulu Arnuri1,Swami Naidu Gurugubelli1,Gowtham Satya Swaroop Akkarrapu1

Affiliation:

1. JNTU-GV

Abstract

Powder metallurgy is playing a very important role in the manufacturing industry. In this research, an attempt is made with copper Metal Matrix Composites (MMC) reinforced with an equal proportion of Silicon Carbide (SiC) and graphite powders. The powders are taken in such a way that the reinforcement weight percentage varies from 0 to 10%. The materials are fabricated through the powder metallurgy route. The powder mixtures are blended and then compacted with a uniaxial pressure of 500 MPa to make the green compacted composites with different compositions. The dimensions of all samples are 25 mm x 16 mm x 16 mm, with an average weight of 40 g. Compacted green samples are sintered by the inert gas sintering process. Sintering is performed at 8000C in an inert argon gas furnace for 120 minutes for all the samples. The obtained samples are made suitable for different tests like porosity, the Vickers hardness test, the wear test, Raman spectroscopy, Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray (EDX) Analysis. From the values obtained from the hardness test, it is observed that for all MMCs, the minimum value is obtained at Cu-4% (SiC+Gr) and the maximum value at Cu-8% (SiC+Gr), and in between these percentages of composition, there is a little bit of an increase and decrease in values. Wear test results give the maximum wear rate at Cu-4% (SiC+Gr) and the minimum wear rate at Cu-8% (SiC+Gr). Raman spectroscopy test results are given the calculations of Full Width at Half Maximum (FWHM), depth of incident, absorbance, and Id/Ig values, and they are better at 8% of SiC+Gr, which gives the indication of good bonding between molecules of the powder particles. Image analysis is performed using optical microscopy, SEM, and EDX. The microstructures were revealed in such a way that there was good correlation between the properties at different compositions.

Publisher

i-manager Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3