Enhanced disease detection through image fusion in solanum tuberosum l.

Author:

Hemalatha T.1,Piramu Kailasam S.2

Affiliation:

1. Rani Anna Government College for Women

2. Sadakathullah Appa College

Abstract

Disease detection in agricultural crops, such as Solanum tuberosum L. (potato), is of utmost importance to ensure crop health and maximize yield. Traditional methods for disease detection in potatoes rely on manual inspection, which can be time-consuming and prone to human error. Image processing and machine learning techniques have shown promise in automating disease detection processes. This study proposes a novel approach for disease detection in Solanum tuberosum L. by leveraging image fusion techniques. The proposed method involves the fusion of multiple images of potato plants, acquired using different sensors or imaging modalities, to create a comprehensive and informative representation of the crop. Image fusion methods, such as discrete wavelet transform and continuous wavelet transform, are employed to combine the spectral and spatial information from the images effectively. The different image fusion rule is applied to the input images and resultant fused images, where relevant features are extracted to distinguish between healthy and diseased potato plants. The training dataset comprises diverse samples of both healthy and diseased potato plants, captured under various environmental conditions and disease stages. The performance of the proposed disease detection system is evaluated using standard metrics such as entropy. The results demonstrate the effectiveness of the image fusion approach in accurately identifying diseased potato plants, achieving high detection accuracy and generalization capabilities. The potential benefits of this paper include providing farmers and agricultural experts with an efficient and reliable tool for early disease detection in potato crops. Early detection can lead to timely intervention, minimizing crop losses and optimizing agricultural practices. The proposed methodology also lays the groundwork for future research in using advanced image processing techniques and machine learning algorithms for disease detection in other agricultural crops, contributing to the overall improvement of crop management and food security.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3