Impact of artificial intelligence in medical imaging

Author:

S. Atheena Milagi Pandian1,Rashika Murugan1,N. Sri Manoj Kumar1,Sudherson M.1,S. Mohammad Sahil1

Affiliation:

1. Atheenapandian Private Limited

Abstract

Artificial Intelligence (AI) is a cutting-edge technology that analyzes complex data using computer algorithms. Diagnostic imaging is one of the most potential clinical uses of AI, and increasing effort is being put toward optimizing its functionality to make a wide range of clinical problems easier to identify and quantify. Research employing computeraided diagnostics has demonstrated exceptional precision, sensitivity, and specificity in identifying minute radiographic irregularities, which has promise for enhancing public health. However, lesion identification is often used to define result assessment in AI imaging research, neglecting the nature and biological aggressiveness of a lesion. This might lead to a distorted portrayal of AI's performance. Some AI imaging research evaluate clinically significant results, whereas others compute sensitivity and specificity to quantify diagnostic accuracy. Though AI frequently picks up on little changes to images, more significant outcome factors include newly discovered advanced disease, illnesses that need to be treated, or circumstances that might have an impact on long-term survival. AI-based research should concentrate on clinically significant events since they have a significant impact on quality of life, such as symptoms, the requirement for disease-modifying medication, and death. Numerous research have demonstrated that AI outperforms normal reading in terms of specificity and recall rates; nevertheless, the kind and biological aggressiveness of a lesion are often overlooked in the estimation of accuracy and sensitivity.

Publisher

i-manager Publications

Reference18 articles.

1. Using machine learning to improve survival prediction after heart transplantation

2. The rise of artificial intelligence in healthcare applications

3. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine

4. Flynn, M. J., Gray, J. N., Jones, A. K., Lagally, K., Opderbeck, H., Popek, G. J., & Seegmüller, G. (1977). Lecture Notes in Computer Science. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3