Dynamic simulation and parametric analysis of green roofing in buildings

Author:

Malik F. Elmzughi1,Zuhaira M. Alhafi1

Affiliation:

1. University of Tripoli

Abstract

Enhancing energy efficiency and performance of the buildings and improving the air quality are acquisition during the cooling and heating seasons. According to the 2010 report by General Electricity Company of Libya, electrical energy consumption by residential sector account for approximately 39% of total demand in Libya. The green roof technologies in buildings are one of the main methods for using energy economically and reducing CO2 emission. The economic parameters such as the vegetation thickness and its thermal conductivity for the green roof, the electrical energy cost, coefficient of performance and EER all affect CO2 emission and total cost of the buildings. This study focuses on the impact of these parameters on the application of green roofs as well as degerming the optimum vegetation thickness and thermal conductivity of vegetation layer. Tripoli's degree days were used as one of methods to achieve these calculations or the results. The green roof and mathematical models were performed to find energy savings, and payback, and CO2 reductions. This study focuses on investigating these parameters that affect the green roof for external building based on life-cycle cost analysis (an economic model). As a result, the total cost increased from 6.7 to 23.05 $/m2; while CO2 emission decreased from 2.5 to 1.52 kg/m2/years with increasing the electricity costs which includes the effects of Interest rate on CO2 emission and total cost. Total cost decreased from 16.7 to 14.9 $/m2; while CO2 emission increased from 1.85 to 1.94 kg/m2/years with increasing the Interest. An increase in COP (Coefficient of Performance) and EER (Energy Efficiency Ratio) causes the CO2 emission to decrease from 2.2 to 1.51 kg/m2/years and from 2.08 to 1.37 kg/m2/year and total cost to decrease from 18.3 to 12.9 $/m2 and from 17.4 to 11.76 $/m2. The total cost and CO2 emission are increased from 13.7 to 16.5 $/m2 and from 0.34 to 1.74 kg/m2/years with increasing the thermal conductivity of vegetation. And the effects of degree day on CO2 emission and total cost, the total cost and CO2 emission are decreased from 18.6 to 14.67 $/m2 and from 2.45 to 1.55 kg/m2/years with increasing the degree day.

Publisher

i-manager Publications

Subject

General Medicine

Reference18 articles.

1. Banting, D., Doshi, H., Li, J., Missios, P., Au, A., Currie, B. A., & Verrati, M. (2005). Report on the environmental benefits and costs of green roof technology for the city of Toronto. Department of Architectural Science, Ryerson University, Toronto, Ontario, Canada. Retrieved from https://mpra.ub.uni-muenchen.de/70526/1/MPRA_paper_70526.pdf

2. Bilec, M., Ries, R., Matthews, H. S., & Sharrard, A. L. (2006). Example of a hybrid life-cycle assessment of construction processes. Journal of Infrastructure Systems, 12(4), 207-215.

3. Green roofs; building energy savings and the potential for retrofit

4. Dombaycı, Ö. A. (2007). The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment, 42(11), 3855-3859.

5. Eddenjal, A. S. (2015). Dust/Sand Storms over Libya: Spatial Distribution, Frequency and Seasonality. Libyan National Meteorological Center, Tripoli, Libya, (pp. 1-19).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3