Optimizing battery charging efficiency and longevity through smart charging techniques in microcontroller-based systems

Author:

D. Suja Darling1

Affiliation:

1. C.S.I. Institute of Technology

Abstract

This paper explores the topic of optimizing battery charging efficiency and longevity through smart charging techniques in microcontroller-based systems. With the increasing demand for portable and wireless devices, efficient battery charging and longer battery life have become essential. The use of microcontroller-based systems allows for more precise and effective control of battery charging, resulting in improved efficiency and longevity. The current research is on intelligent battery charging systems and battery management systems and discusses various smart charging techniques that can be employed in microcontroller-based systems, including fuzzy logic control, model predictive control, and hybrid algorithms. The paper also highlights the importance of battery management and the need for a comprehensive battery management system to optimize charging efficiency and battery longevity. Finally, the paper presents several case studies and experimental results to demonstrate the effectiveness of these smart charging techniques in improving battery charging efficiency and longevity in microcontroller-based systems.

Publisher

i-manager Publications

Subject

General Medicine

Reference23 articles.

1. Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model

2. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

3. Review on the charging techniques of a Li-Ion battery

4. Nickel–Cadmium and Nickel–Metal Hydride Battery Energy Storage

5. Chen, C., Man, K. L., Ting, T. O., Lei, C. U., Krilavičius, T., Jeong, T., ... & Wong, P. W. H. (2012). Design and realization of a smart battery management system. Lecture Notes in Engineering and Computer Science, 2, 1173-1176.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3