Speech enhancement for noisy signals using adaptive algorithms

Author:

Anna Rahul Kasukurthy1,Uma Sankar Chintala D.1

Affiliation:

1. Acharya Nagarjuna University

Abstract

Speech enhancement is a signal processing technique used to improve the quality and intelligibility of speech recordings that contain noise or interference. Its main goal is to eliminate unwanted background noise while preserving the clarity and naturalness of the speech signal. This paper provides a comprehensive analysis of three widely used adaptive filtering algorithms, Least Mean Square (LMS), Normalized Least Mean Square (NLMS), and Affine Projection Algorithm (APA). The limitations of LMS, such as slow convergence and sensitivity to input variations, are addressed in this study. By incorporating normalization, NLMS improves convergence speed and robustness to input power levels. The Affine Projection Algorithm (APA) is known for its exceptional performance in non-stationary environments, achieved through subspace projection to estimate optimal filter coefficients, resulting in faster convergence and improved tracking capabilities. In this paper, the algorithms are compared using Signal-to-Noise Ratio (SNR), Mean-Square Error (MSE), and Root-Mean-Square-Error (RMSE) values.

Publisher

i-manager Publications

Subject

General Medicine

Reference22 articles.

1. Performance analysis of speech enhancement methods using adaptive algorithms and optimization techniques

2. Ballanger, M. G. (2001). Adaptive Digital Filters. Marcel Dekker Inc, New York (pp.1-450).

3. Boroujeny, B.F. (1999). Adaptive Filters: Theory and Applications. John Wiley & Sons, New York.

4. Chandrakar, C., & Kowar, M. K. (2012). Denoising ECG signals using adaptive filter algorithm. International Journal of Soft Computing and Engineering (IJSCE), 2(1), 120-123.

5. Chassaing, R. (2002). DSP Applications using C and the TMS320C6x DSK. John Wiley & Sons, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3