Integrated edge thresholded deep network for image denoising

Author:

Srinivasa Rao Thamanam1,Manjunathachari K.2,Satya Prasad K.1

Affiliation:

1. Jawaharlal Nehru Technological University

2. GITAM Deemed to be University

Abstract

The outcome of the denoising network suffers from over-smoothing effect, due to this, the texture content of the object will be lost. Lack of accurate texture properties in the image may lead to inefficient object segmentation and classification. This paper proposes an edge-preserving thresholding approach and applies it to the output of the denoised network. The thresholding approach relies on the distance and weight factors, which move the noisy components toward the mean of the subspace. This proposal is meant to treat over and under-smoothed components, where the smoothing decrement or increment is controlled by the threshold calculated with the average mean of the components in the respective subspace. The approach is compared with state-of-the-art methods in terms of image quality, and it is observed that this approach increases the quality proportionately. The result depicts that there is a significant improvement in PSNR of about 0.7~ 1 dB with the proposed integrated mechanism when compared against the conventional CNN-based image denoiser. Moreover, the edge details are better preserved with the proposed integrated mechanism.

Publisher

i-manager Publications

Reference26 articles.

1. Agostinelli, F., Anderson, M. R., & Lee, H. (2013). Adaptive multi-column deep neural networks with application to robust image denoising. Advances In Neural Information Processing Systems, 26, 1493–1501.

2. Iterated Nonlocal Means for Texture Restoration

3. A Non-Local Algorithm for Image Denoising

4. Image denoising: Can plain neural networks compete with BM3D?

5. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3