Design and implementation of robot assisted arduino based object recognition and sorting

Author:

Sneha S.1,Nayana R.1

Affiliation:

1. K S School of Engineering and Management

Abstract

This paper deals with an automatic material handling system that coordinates the movement of a robotic arm to pick up items moving on conveyor belts. The system utilizes advanced sensors and machine learning algorithms to ensure precise and efficient manipulation of objects, enhancing the overall automation and productivity of material handling processes. It aims to organize colored objects approaching on the conveyor by picking and placing them in separate, designated locations. The robotic system employs advanced computer vision algorithms to precisely identify and manipulate the diverse array of colored objects, ensuring efficient and accurate sorting on the conveyor belt. This reduces the tedious work done by humans, ensuring accuracy and rapidity in the process. Additionally, it paves the way for more efficient utilization of human resources, allowing professionals to focus on higher-level tasks that require creativity and critical thinking. The system includes color sensors that detect the items' colors and transmit signals to the controller. Additionally, the controller processes the signals from the color sensors to facilitate accurate identification and sorting of the items. The microcontroller then guides the signal to the motor driving circuit, which operates the different motors of the robotic arm to grasp the object and place it in the correct location. Additionally, the robotic arm's sophisticated sensor feedback system ensures precise positioning and adaptability to varying environmental conditions, enhancing its overall efficiency in object manipulation tasks. Depending on the color sensed, the robotic arm goes to the correct location to release the object and returns to its normal position. Additionally, the robotic arm employs advanced computer vision algorithms to precisely identify and differentiate colors, ensuring accurate execution of tasks in diverse environments.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3